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The Generalized Lagrange Formulation for
Nonlinear RLC Networks

HARRY G. KWATNY, MEMBER, IEEE, FRANCIS M. MASSIMO, aNp LEON Y. BAHAR

Abstract —Based on the concept of generalized Euler-Lagrange equa-
tions, this paper develops a Lagrange formulation of RLC networks of
considerably broad scope. It is shown that the generalized Lagrange
equations along with a set of compatibility constraint equations represents
a set of governing differential equations of order equal to the order of
complexity of the network. In this method the generalized coordinates
include capacitor charges and inductor fluxes and the generalized velocities
are comprised of an independent set of capacitor voltages and inductor
currents. The generalized Hamilton equations are also developed and the
connection with the Brayton-Moser equations is established.

I. INTRODUCTION

CENTRAL issue in formulating Lagrange’s equations

for electrical networks, as in other types of physical
systems, is the selection of generalized coordinates and
velocities. The natural choice of the earliest Lagrange for-
mulations of network equations was capacitor charge or
inductor flux for coordinates and their formal derivatives
for generalized velocities. Indeed, such a selection is used
in most textbooks [1], [2] dealing with the subject and is
legitimately referred to as the classical choice. The prob-
lem, of course, is to find a set of capacitor charges and /or
inductor fluxes which satisfy the circuit topological con-
straints (admissability conditions) and along with these
constraints completely specify the network.
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tober 22, 1981. This work was Teceived supported by the US Department
of Energy, Office of Electric Energy Systems, under Contract ET-78-5-01-
3088.
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The usual procedure [1, for example] is to use either flux
variables or charge variables but not both. In the former
case the procedure is to identify a set of independent node
voltages which are defined as the generalized velocities and
their integrals (fluxes) are then the generalized coordinates.
For the case of charge variables, the procedure is to
identify a set of independent loop currents which are again
defined to be generalized velocities and their integrals
(charges) are then the generalized coordinates.

Although the method outlined above appears to be sys-
tematic and straightforward, the extent of its applicability '
is not at all clear. As a matter of fact, the procedure carries
with it inherent limitations with regard to the type of
components and topologies that can be treated. This is
readily evident upon inspection of the worked examples in
any standard text although the essential nature of the
problem is never discussed. MacFarlane [3] took a major
step towards clarifying the difficulty. He showed that if it
were possible to choose a tree consisting entirely of induc-
tors, then the inductor fluxes form a set of generalized
coordinates in the spirit of the above procedure. Alterna-
tively, if it is possible to choose a chord composed entirely
of capacitors, then the capacitor charges form a set of
generalized coordinates.

The possibility of relaxing the severe limitations of the
above methods by the use of a mixed set of coordinates,
i.e., both charges and fluxes, was considered by Chua and
McPherson [4]. This pioneering work departed radically
from conventional thinking. Their choice of coordinates

0098-4094 /82 /0400-0220$00.75 ©1982 IEEE
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was inductor charge and capacitor flux with respective
velocities of inductor current and capacitor voltage. Chua
and McPherson’s work and subsequent extensions by Milic
and Nov k [5] greately enlarged the range of applicability
of Lagrangian methods to electrical networks. However,
several questions of a fundamental nature are raised. Of
central importance is the specification of initial conditions.
The specification of capacitor charge and inductor flux is
quite natural, but specification of capacitor flux or induc-
tor charge is not. This point has been raised by Szatkowski
[6]. Thus the question remains, is it necessary to abandon
the classical choice of coordinates and, if so, why? In
addition, for certain networks the Lagrangian of [4], [5]
includes unspecified constant parameters related to the
initial conditions. Once again it is necessary to ask whether
this undesirable property is actually necessary and, if so,
what is its meaning? These and related questions have not
been previously addressed and form the motivation for the
studies presented herein.

The development of the generalized Euler-Lagrange
equations by Noble [7] allows the authors to view
Lagrange’s equations for electric circuits from a new per-
spective. It is shown that it is possible to return to the
classical choice of capacitor charges and inductor fluxes as
generalized coordinates. However, the generalized veloci-
ties are not simply the derivatives of the generalized coor-
dinates. Rather, they are linear combinations of the coordi-
nate derivatives and correspond specifically to a set of
physical variables composed of capacitor voltages and in-
ductor currents. The procedure described herein eliminates
the aforementioned difficulties of Chua and McPherson’s
formulation.

The possible applicability of the generalized Lagrange
formulation to electrical networks was suggested by Noble
and Sewell {8] and Jones, Holding, and Evans [9].

In Sections II, 1II, and IV, certain assumptions are
imposed for clarity which do not affect the general theory
in any way. The networks contain only inductors and
capacitors and we do not admit excess elements. LC net-
works illustrate the theory without the added complexities
of converter elements. It is also assumed that all elements
are bijective and in fact linear. This assumption is valuable
in distinguishing two separate and important issues that
can otherwise become confused. Previous authors attempt
to treat the most general case from the onset and miss
many insights into the nature of linear LC network prob-
lems. The extension to general nonlinear elements and the
inclusion of resistors and independent sources is accom-
plished in Section V.

In Section VI we provide an example and in Section VII
we establish the connection between the generalized
Lagrange and Brayton-Moser equations. Section VIII deals
with the generalized Hamilton equations and in Section IX
the necessary modifications are made to incorporate excess
elements and controlled sources.

Finally, we point out that generalized Euler-Lagrange
equations of [7], [8] arise in the context of the theory of
complementary and dual variational principles. We do not
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develop the variational aspect of the problem in this paper
although we consider it to be an important and interesting
issue. Indeed, as pointed out by one reviewer, our treat-
ment of nonconservative elements through the addition of
generalized forces (Section V) bypasses any link to varia-
tional principles, just as in the case of the classical Lagrange
formulation.

II. THE GENERALIZED LAGRANGE FORMULATION

Given a dynamic network 9U consisting of time in-
variant, linear capacitors, and inductors, choose a normal

‘tree 7 and let £ be its cotree. Recall that a normal tree is a

tree containing a maximum number of capacitors and a
minimum number of inductors [10]. We begin by restrict-
ing the discussion to networks without excess elements.
That is, capacitor-only loops and inductor-only cutsets are
not admitted. This condition will be relaxed in Section IX.
If no excess elements are allowed then a normal tree
contains no inductors. We further subdivide 7 and £ into
7,7, and £,,£,, respectively, and impose the following
condition;

Hypothesis 1: elements in £, do not form fundamen-
tal loops with elements in 7,.

Our perspective is to view the capacitor charges in 7, 4,5
and the inductor fluxes in £,,¢,,, as generalized coordi-
nates and the capacitor voltages in 7,, v,,, and the inductor
currents in £,, i, ,, as generalized velocities. In what follows
we will establish the conditions under which such a point
of view is appropriate.

What distinguishes this approach, of course, is our defi-
nition of generalized velocities, the implications of which
will be discussed at length below. Central to the develop-
ment of these ideas is the relationship between the gener-
alized velocities and the derivatives of the generalized
coordinates which we shall refer to as the coordinate veloci-
ties. We might also remark at this juncture that the im-
portant consequence of Hypothesis 1 is that the coordinate
velocities ¢, are related only to the generalized velocities
iy, and not to any of the currents i, ,, and the coordinate
velocities ¢, , are related only to the generalized velocities
v., and not to any of the voltages v,. Therefore, the
relationship between our generalized coordinates and
velocities assumes a particularly simple structure which will
become evident later in this section when it is defined.

The tree and chord elements are related by the network
dynamical transformation matrix [11] D as follows:

i,=Di, (1)
v,= — D'y, 2)
where
D, D, D,
p=\D, D, O ()
D 0 0

i,, v, are the tree currents and voltages, respectively, and
i, v, are the chord currents and voltages, respectively. Due
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Fig. 1. Generalized coordinates and velocities.
to our assumption of no excess elements, D,, and D, are
null matrices. Also, D,,, D,,, and D,, are null matnces
since there are no converter elements Therefore (1) and
(2) become

i,=D,i

§§7C

(4)
(%)

Equation (4) can be subdivided to accommodate the differ-
ent classes in Fig. 1, i.e.,

|:icl]:-|:Dssll 0 ][ILI] (6)
ic2 Dss21 DSSZZ iL2 '

Note that a zero appears in the top right corner of the D
matrix. This is due to the restriction that the inductor
elements in £, when placed into the tree do not form loops
which contain capacitor elements in 7,. Similarly (5) can be

written

[ULI ] — D/ssll D,ss21 [Ucl ]

02 0 D' 5, |102]
It is convenient to regroup (6) and (7) as follows. The
upper part of (6) and the lower part of (7) provide a

relationship between the generalized coordinates and veloc-
ities:

— ’
o= D ssUs

()

9c
di ¢L2] [ ] ®
where
4= Dsos“ - gsls22j|.
The remaining equations are
o1 = — D100 — Diga e (9a)
iy = Dyonipy + Dy (9b)

Equation (8) relates the coordinate velocities and the
generalized velocities. We shall refer to (8) as the velocity
transformation relation and to the matrix 4 as the velocity
transformation matrix. Moreover, (8) is to be used to
uniquely establish the generalized velocities as a function
of the coordinate velocities. This is trivially accomplished
when A has an inverse, but when that is not the case we are
led to several subtle and intriguing results which are de-
“layed until Section IV.
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Since the relationship between the generalized coor-
dinates and velocities is not a classical one, it is reasonable
to assume that the classical Lagrange equations may not be
appropriate. This leads to the use of the so-called gener-
alized Lagrange equations developed in Noble [7] and later
appeared in Noble and Sewell [8]. The generalized Lagrange
equations can be written

AL aL
TE)(TQ)'+8_Q’_O (10)
™o =V (11)

Q generalized coordinate column vector,
V  generalized velocity column vector

L Lagrangian,

T linear operator,

formal adjoint of T.

Equations (10) and (11) can be interpreted as the classical
Lagrange equations when T= — I(d/dt) which implies
that 7%= I(d /dt) [8]. The Lagrangian L is then the stan-
dard Lagrangian.

One point concerning notation is worth mention. We
shall always define the Lagrangian L as a function of the
generalized coordinates and generalized velocities, i.e., L =
L(V,Q). However, when L is used in (10) it is to be
understood that T*Q replaces V, that is, L = L(T*Q, Q). It
is occasionally useful to write (10) in the form

oL aL
Tov T3

in which case it is intended that L be expressed in terms of
V and Q. Equations (10) provide the differential governing
equations. The interpretation (10a) will allow us to associ-
ate these equations dlrectly with the loop and node equa-
tions (9).

Our major task is to define T and L appropnately to
arrive at the correct equations of motion. In subsequent
sections we shall show that this can indeed be accom-
plished and will prescribe a procedure for doing so. Fur-
thermore, it is clear that (11) must represent the unique
specification of generalized velocities in terms of coordi-
nate velocities to be established from the velocity transfor-
mation relation, (8). In the following section we consider
the simplest case where A has an inverse. The general case
is constdered in Section IV.

=0 (10a)

INVERTIBLE VELOCITY TRANSFORMATION
MATRIX

II1.

In this section, it is assumed that the linear operator 4
has an inverse. It is true that 4 has an inverse if and only if
D, and D/,,, have inverses. This implies that 7, and £,

ssll

" have the same number of elements and also that 7, and £,

have the same number of elements. These are substantial
restrictions on the allowable network configurations. How-
ever, this special case is a convenient vehicle for introduc-
ing several important ideas. We consider now the choice of
the operator T and the definition of the Lagrangian.
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The velocity transformation equation (8) can be written

d _
p Q=AV (12)
where
V= [; J the generalized velocity vector
c2
qcl . .
Q= [ o l , the generalized coordinate vector.
Since 4! exists, (12) can be expressed

4 2o=v. (13)

Upon comparison with (11) we are motivated to define the
operator

d
= 412

| T*=A 7 (14a)

and, therefore,

T=—(4 (14b)

—1 “
) dt’
The generalized Lagrange equation (10) now becomes

oL oL

_ -2\ V= =
(4 )dt G(A—liQ)/ +3Q’ 0. (15)
dt ~
Multiplying (15) by A’ and replacing (13) into (15) yields
oL ,0L
— e+ a 35 =0 (16)

Replacing V' and Q by their components and dividing (16)
into node and loop equations, the following equations
result:

aL

oL , _
_E[al,l,l] Dsslla r =0 (173‘)

d[ oL oL
Et— [ 3022 ] T Yesn2 34)22 =0. (17b)

We now consider a class of quadratic Lagrangians
defined as follows:

_1 ¢ o] 1 [S
—yV — N
T2 [0 ¢ 29 0

submatrix of the inductance matrix L,
submatrix of the elastance matrix S,
submatrix of the inverse inductance matrix T,
submatrix of the capacitance matrix C,

cross product matrix .

HQ+QGV(B)

where

Q Rt

The Lagrangian of (18) is a standard one except for the
cross product term, Q'GV. The cross product term is
necessary when D, ,, 0. As can be seen in MacFarlane
f3] and Jones and Evans [12], their Lagrangian formulation
leads only to loop equations or node equations. Therefore,
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no Cross product term appears. A cross product term does
appear in Chua and McPherson {4] and Milic and Novak
[5] but there is no discussion as to its necessity or how it
was chosen. In the following we will show how to define
the cross product term and will show that it is not unique.

r 1¢ tna demonctrate that the faormulation
Our pu;POSe 1§ 10 aémonsirat€ tnatl e Iormuiation

described above does indeed lead to the network equations
of motion with an appropriate choice of G. Rewriting (18)
and inserting the components of ¥V and Q, results in

1, - 1, - 1, = 1, -
L= EILILILI + Evczcvcz - 5¢L2F¢L2 - chlsqcl

+[qcl ] [Gll Glzl[iLl}_ (19)
br2 l Gy Gzz_ | Ve2 |
Evaluating (17a) using the Lagrangian of the form of (19)
yields
~dip)

L

do D g
dth D;1Sq,+

+(D5,1G

’
G D 1,G 1,0,

Dyy)ip =0.

(20)
However, (20) is a voltage loop equation and cannot con-
tain any currents. Therefore, the last term in (20) must be

zero for all i;, at any time, ¢. Thus results in the first
restriction for the G matrix, i.e.,

el
Gll

D/;,G, — G Dy, = 0. (21)
Equation (20) becomes
_odi do , &
d?l G dth = D/1159 t Dgy11G 0., = 0.
(22)
From (8),
d ,
E‘I)LZ = —D{»0,. (23)

Replacing (23) into (22) and collecting terms yields

. di;,

LT - Dssl]chl (DG, + Gélps,SZZ)UCZ =0.

(24)

Substituting the appropriate constitutive relationships into
(24), it is easily seen that (24) is the topological voltage
loop equation (9a) provided

—Di = ( D[,G, + G ss22Ds,s22)' (25)

Equation (25) is the second restriction for the matrix G.
Evaluating (17b) using the Lagrangian of (19) yields the
following equation:
~dv,, , dq.
dt 12 dr

+ Dy Up 2 — Dy 00Goigy

+ (Gﬁz D{», — Dsszszz)Ucz =0. (26)

However, (26) is a current node equation and cannot
contain any voltages. Therefore, the last term in (26) must

be zero for all v, at any time, ¢. This results in the third
restriction for the G matrix, i.e.,

Gﬁz Ds,322 —D

(27

X 22G22 =0.
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Equation (26) becomes

~dv, , dq,
_Cth_ 12 dtl +Dss22F¢L2 D, ,Gyip =0.
(28)
From (8),
dq.
dtl =D ip- (29)

Replacing (29) into (28) and collecting terms yields

~ dv,
-2 + Dy Te,, —(

dt D, ;2,Gy + Gy Dygy1 )i, = 0.

(30)

Substituting the appropriate constitutive relationships into
(30), it is easily seen that this equation is the topological
current node equation (9b) provided

ss21 ( 322G2l +G21 ssll) (31)

So far we have the following. The choice of T and L yields
the correct loop and node equations provided the four
restrictions, (21), (25), (27), and (31), are observed. These
can be arranged into the following matrix equation:

Ds’sll HGH 12]_[(;;1 Gﬁl]
s522 GZ] 22 ;2 GéZ
. Dy, 0 ] :[ 0 - D;SZI] (32)
0 - ss22 D::Zl 0

Equation (32) can be written as follows:
AG—(AGY=M (33)
where M is a skew symmetric matrix defined in (32).
Equation (33) states a well-known fact that a square matrix
minus its transpose yields a skew-symmetric matrix. How-

ever, another fact is that a square matrix plus its transpose
" yields a symmetric matrix. Therefore, -

(4'G)+(A'G)=N

where N is an arbitrary symmetric matrix.
The solution for G is now apparent. Adding (33) and
(34) yields

(34)

AG=H(M+N).
Therefore, since 4 has an inverse, then
=4(4)"(M+N). (36)

It is now obvious that G is not unique since N is arbitrary.
Equation (36) can produce Chua and McPherson’s [4] and
Mili¢ and Novak’s [5] cross product term with the proper
choice of N.

For this section, the choice of N and consequently G is

(35)

as follows:
. 0 5521
V= [ Dsle 0 ] (37)
0 0 (
G= . 38
[ Dss22 Dsle 0 ] )
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Therefore if A has an inverse the only cross product term
— ¢},D; 2, D,,5,i 1, The Lagrangian of (19) is then
L=4i},Lig, + 2~ 3912001, — 14459,
— 672D Dgiigy- (39)

The equations of motion can be obtained by replacing
the definition of G, (38), into (30) and (24). This produces
the following equations:

5002Cvc

= dch S .
-C at * Dy T'p, + Dy0iy =0 (40a)
and
. di
- LTI;I ssl lch] JSZ]DCZ 0 (4Ob)

In order to solve (40) it is necessary to obtain equations of
motion in terms of the generalized coordinates and their
derivatives. Therefore, by replacing (13) mto (40), the
following equations are obtained:

C(D',5)" ¢L2 + Dol + Dy D1 = 0
(41a)

and

DsISZI(Ds’sZZ)_ l(i)LZ =0.
(41b)

Notice that the initial values necessary to solve these
equations are g,,(0), ¢,,(0), v.,(0), and i;,(0) since ¢;, and
¢, can be computed from v,, and i, using the velocity
transformation relation, (13). All these quantities are physi-
cally meaningful.

LD.rsllqcl ;sll§q01 +

IV. THE GENERAL VELOCITY TRANSFORMATION
MATRIX

The purpose of this section is to extend the procedure
described above to the general case where the velocity
transformation matrix 4 does not have an inverse. Our
objective is to use the velocity transformation relation,
(12), to establish a unique specification of the generalized
velocities in terms of the coordinate velocities. There are
two difficulties. The first is that there may not exist any
solutions of (12) for V. We shall see that solutions for V
exist only if certain “compatibility” constraints are im-
posed on the coordinate velocities. The second problem is
that if a solution to (12) exists it may not be unique. In
general it will be necessary to extend the coordinate vector
in order to assure a unique solution. In such a case we can
associate with 4°a pseudo-inverse 4* which has the prop-
erty

AATA=A. (42)

Furthermore, let

' A=LR (43)
be a rank factorization of 4 where L is a matrix m X k and
R is a matrix k X n. L and R can always be found for any

m X n matrix 4 of rank k [13]. Since L and R are of full
rank they possess, respectively, left and right inverses L’
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and R’. A pseudo-inverse of A is then
At =RL. (44)

We further define the nX(n—k) and (n—k)Xn
matrices A and @ by a rank factorization of {I — R'R}:

(I— R'R}=A®. (45)

Similarly, define the m X (m — k) and (m — k) X m matrices
T, = by a rank factorization of {I — LL'}:

(I-LL')=Ts. (46)
Note the following properties of these matrices:
[R][R’ Al=1I (47)
o
]
[é][L r]=1. (48)

It is now possible to summarize the solution properties of
(12). A solution of (12) exists if and only if

=0=0. (49)
If (49) holds, then all solution of (12) take the form
V=RL'Q+ Aw (50)

where w is an arbitrary (n — k) vector.
It is convenient to collect (49) and (50) into the form

'V]Z'R'L’ A’[Q‘] (s1)
[ 0 | = 0llw
and note its inverse
Q]: LR I‘]-V]' (52)
| W & O0]iL0
For convenience, define the matrices:
_[s" 1_[LR r] ‘
¢ ["‘:A]_[@ 0 (53)
and
a-1=|4 :[R’L’ A] (s4)
7 = 0
and also the extended coordinate vector, Q,
5 _ Q]
0 [W . (55)

The variables w will be referred to as quasi-coordinates.
Equation (52) can now be written

0=Av. (56)
We will refer to (56) as the extended velocity relation.
Equation (51) can be written

AQ=v (57)

vQ=0. (58)
Equations (56) and (57) define the relationship between the
generalized velocities and coordinate velocities in both
directions. The compatibility constraints, (58), must hold for
V to exist. Comparing (57) with (11) motivates the defini-
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(59a)

and, therefore,

T=—(dy<,

(59b)

As in the previous case in which the velocity transforma-
tion matrix was invertible, the velocity transformation re-
lation, (45), leads to the definition of generalized velocities
in terms of the operator T*, (57) and (59a). However, in
this case we are also led to an extension of the number of
generalized coordinates (55) and to a set of constraint or
compatibility equations, (58). It should be noted that if the
velocity transformation matrix has a left inverse then no
additional coordinates are required. On the other hand, if
it has a right inverse then there are no compatibility
constraints.

The compatibility constraints are of differential form
and since they are obviously integrable they are by defini-
tion holonomic. However, if (58) were integrated (as is
common practice when dealing with holonomic con-
straints) the result would introduce precisely the same
number of arbitrary constants as the number of generalized
coordinates we would hope to eliminate. Consequently
there would not be a reduction in the number of degrees of
freedom. Alternatively, the method of Lagrange multipliers
can be used to incorporate these differential constraints.

Lagrange’s equations must be altered to accommodate -
the use of Lagrange multipliers [14]. We shall consider the
genéralized (10) modified as follows:

T———aL~ + 8_1: =¢'A
o(TQ)y 8Q’
where v is defined in (57), A is a column vector of Lagrange
multipliers, and the equations are written in terms of the
extended coordinate vector Q. Using the definitions of 7,
T* given in (59) leads to
L ) L 8L

=, d
- ( Al ), -, ( -~y & —T
a\o(agy | g
Making use of (57) and premultiplying (61) by & defined in
(56) yields

(60)

=yA. (61)

oL

—(A'4y— (aV,)+A’ -=(yd)N  (62a)
—(AAY dt(;’lf,)ﬂ' = (yAYN.  (62b)

Using the prbperties of A (following (55)), (62) reduces to

d{dL), - oL _
LAy (63b)
9Q’

Equation (63b) explicitly provides the solution for the
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Lagrange multipliers A, whereas (63a) does not contain A.
Moreover, (63a) can be divided into two parts upon use of
the partitionings of ¥, @, and 4

dfoL), , L oL
o) D e =0 (o4
(L aL | oL _
)b o =0, (s4b)

We have yet to define the Lagrangian and to show that
(64) along with the compatibility equation (58) do provide
the governing equations for the network. Again we con-
sider a class of quadratic Lagrangians, now of the form

L= %iiliiu + %02‘26002 - %‘Pizf“hz - %Q£1S~qc1
g, 11 Gu G
+| ¢, | Ga Gzz [ ] (65)
w il Gy Gy

Notice that the new coordinates, w, appear only in the
cross product term and, as before, the first four terms in
(65) correspond to the “kinetic” energy minus the *poten-
tial” energy and depend only on the original generalized
coordinates and generalized velocities.

As in Section III the determination of the G matrix can
be obtained by evaluating (64) using the Lagrangian of
(65). This development follows that of Section III closely
with similar results except that (35) is extended to incorpo-
rate the w coordinates. Therefore, the equation for the
cross product term is

AG=1(M+N) (66)

where M and N are the same matrices as in Section III
(equations (32), (37)). Since 4 has a left inverse, (66) can be
easily solved for G as follows:

G=4(A'"Y(M+N).
Evaluating (67) using (37) for N, G is obtained:

(67)

0 0
Dy
(_ s322) Dsle 0 - (68)
A, sle 0
Equation (65) becomes
L=4i, Lipy +30,C0, — 191, T7, — 394540
- ¢22(Ds's22)+ Dypyipy + wiAy Doy (69)
The Lagrangian (69) can be employed in (64) to obtain
. di e .
Lﬁ - ss21( D fobra + Azw)

- s,sllgqcl+q),lA’2D33211Ll 0 (70a)

- do, . .
—-C dtz + Dsszz(r‘PLz +(D, 522) DslelLl)

+ @;4% D500, =0.

(70b)

In order to proceed it is useful to note certain identities.
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Expanding (52), it can be seen that

S t
53| Dty Dygy 0 }+[A1¢1 A:‘Pz}:[ls 0]
1l 0 (D) Diys Babr Doty 0 I

(71)

where I, and I, are identity matrices of dimension s X s and
t X 1, respectively. Therefore,

DID ,+A® =1, (72a)
2@, =0, (72b)
AP, =0, (720)
(Ds'szz)+ Dt 8,8, =1, (72d)
From the standard velocity relation, (54), we have
4o = Dynips (73a)
4r2= — D20, (73b)
Ww=®,i;, +®,0,. (73¢)

Now, using (72¢), (73b), (73¢), and (724d) in (70a) yields
.di,

- L—d_ = D}1189. — {210, = 0. (74a)
Using (72d) in (70b) yields .
= do.
-C dt2 + Dy 0015+ Dygin; =0. (74b)

Equations (74a) and (74b) are recognized as sets of loop
and node equations, respectively. Compare (74a) with (9a)
and (74b) with (9b).

It remains to be shown that the mixed set of loop and
node equations, (74a) and (74b), along with the compatibil-
ity equations (58) form a complete set of network equa-
tions. To see this we rewrite (74a) and (74b) in terms of the
generalized coordinates and their derivatives by using the
definition of generalized velocities, (57), in the form

iy =Dy datAp (75a)
= —(D}n)" b2+ Do (75b)
Using these relation in (74a) and (74b) yields
— LD} os11de1 — Lo — D,sslls;qcl + Dssllsqcl
Ds’s21(Ds’522)+ ér, = DipAw=0 (76a)
C(D}3,)" br2 — CAoy + Dy T2

+Dss21Dssllqcl+Ds:21Alw 0. (76b)

Equations (76) can be reduced in order by defining
z2=W=¢yip t $r0.
Therefore, (76) can be written
— LD} g — LAz — D184

D/, (D, D{54,2=0 (77a)

.-
) b
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and

5y, Ao . .
C(D}y) ¢1—CAy2+ Dy T'9; 5

+Dss21D:v—llqcl+Dss2lAlz:0' (77b)
For completeness (58) can be rewritten as
Vg, + Vo, +¥,2=0. (77¢)

We now summarize several important facts. First, (77a)
and (77b) comprise n equations and (77c) represents an
additional m — k equations for a total of n+m— k. The
vectors q,,, ¢;, comprise m variables and z constitutes an
additional n — & for a total of n + m — k variables.

Equations (77) require 2m+n—k initial conditions.
Specifically, these are ¢,(0), §.,(0), ¢,,(0),.¢,(0), and z(0).
Note that from (73) i,,(0) and v_,(0) provide ¢,.,(0), ¢ 12(0),
and z(0). Consequently, the initial values ¢,(0), ¢;,(0),
i;,(0), and v_,(0) completely specify the initial conditions
required for (77).

The solution of (77) provides q,,, 4.1, $15» $.,, and z for
all 7. Equations (75) allow i, and v, to be computed from
4.1, ¢;, and z. Thus the set of differential equations (77)
specifies all tree branch voltages (or capacitor charges) and
chord currents (or inductor fluxes), i.e., completely solves
the network. ’

Thus, the formulation prescribed above is complete in
the sense that specification of all capacitor charges or
voltages and inductor fluxes or currents specifies the initial
conditions required to solve (77) which in turn provides a
complete solution of the network.

V. NONLINEAR AND CONVERTER ELEMENTS

The previous discussion was restricted to linear, LC
circuits. These limitations will now be removed. First, our

formulation will be extended to nonlinear LC elements and

subsequently extended to include resistors and source ele-
ments.

Nonlinear Elements

Since general nonlinear elements may not be bijective we
place further restrictions on the element classes defined in
Section II to account for the causality of the constitutive
relationships:

Hypothesis 2: 7, does not contain any voltage con-
trolled capacitors and 7, does not contain any charge
controlled capacitors. Similarly, £, does not contain
any flux controlled inductors and £, does not contain
any current controlled inductors.

With these addition restrictions on the classification of
network elements the previous discussions regarding sys-
tem topology remain applicable. Specifically, the definition
of the operators T*, T, (59) remain unchanged. The
Lagrangian, (65), however, is modified as follows. Follow-
ing Cherry [17] define the capacitor co-energy, inductor
co-energy, capacitor energy, and inductor energy, respec-
tively:

227
Tk, (v,)= /‘152( 02) dv,y (78a)
Utei(iny) :_/¢'Ll(i1,1) dig, (78b)
7‘c'rl(Q(;l) :fvc"L(qcl) dqcl (780)
Uper(9r2) = /ii2(¢L2) dé;,. (784d)

Now, the Lagrangian is
L(V,0)=wxV)-Z(Q)+0'GV  (7%)

where

wx(V)= 7?;2(052)+UZB1(1'L1‘) (79b)

represents. the total co-energy associated with the capaci-
tors in 7, and inductors in £,, and

Z(q) =T, (9.)+ Urea(¢r2) (79¢)

represents the total energy associated with the capacitors in
, and inductors in £,. Note that the cross product term in
(79a) remains the same as that of the linear case, (65). This
is to be anticipated since the cross product matrix G
depends only on the topology and not on the constitutive
relationships.

Using the Lagrangian, (79), and evaluating (64) leads to
the following nonlinear counterparts to (77):

9 i} , ) .
B aiLL,l (Dyinder+ 842) + Dy [(Dfyn) " 12— A2
—D/04(g9,4)=0 (80a)

ach
90,

[( D) bpa— Azz'] + D, [ Dty 1go + 2]

+ Dyigo(b.,) =0. (80b)

Note that d¢,, /3i,, is a function of i;; and can thus be
expressed as a function of ¢, and z using (75a). Similarly
9q,, /0v,, is a function of v, and can be expressed as a
function of ¢ ,.» and z using (75b).Finally, the compatibility
constraints, (77c), remain unchanged and completes the set
of network governing equations. The discussion following
(77) applies here as well.

Converter Elements

The results of the previous section will now be extended
to include independent current and voltage sources and
nonlinear resistive elements. To accomplish this it is neces-
sary to place additional restrictions on the classification of
elements defined in Section II. We assume that following:

Hypothesis 3: All independent voltage sources belong
to 7, and all independent current sources belong to

£,.

Hypothesis 4: All resistors are divided between 1, and
£, such that all current-controlled resistors belong to
7, and all voltage-controlled resistors belong to £,.
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It is possible to approach the inclusion of nonconserva-
tive elements as contemplated here in either of two ways:
through modification of the Lagrangian or through the use
of so-called generalized forces. We shall take the latter
course. In order to see what is required, the topological
network equations (1) and (2) are written as follows,
taking into account the topological restrictions specified in
Hypotheses 1, 2, 3, 4:

icl ] Dssll O 0 0 iLl
i — Dsle . Dss22 Dle DsN2 iL2 (Sla)
ipi Dy 0 0 0 in
iR'rl | DNsZ 0 0 0 iRBZ
V11 D{y Dy Diy Dyg || va
) 0 D] 0 0 0,
L2 | _ _ s/22 L2 | (81b)
O Y D/y, 0 0 Vg
Ore2 | 0 Dix, 0 0 Opri

Note that the velocity transformation relation (8) is a
subset of (81) and remains the basis for specification of the
velocity transformation matrix 4, and consequently for the
operators T*, T. There is no change in our choice of
generalized coordinates nor velocities. Furthermore, the
Lagrangian is not changed from (79).

In view of the earlier discussion it is to be anticipated
that Lagrange’s equations will produce the loop equation
which specifies v;;, and the node equation which specifies
i, 1€,

— 1
v, = — D

J— ’ — ’ — ’
51101~ Dys210c2 — DV p1 — DiygaOra (82a)

(82b)

Notice that the last two terms of each equation are newly
added (compared to (9)) and will not be generated by
Lagrange’s equation in their present form, (60). Conse-
quently, we modify, (60) to include generalized forces,
“F(V, t):

i =DipipyF Dygnoipy+ Doyyizy + Dpiges-

r—£ a—L =¥\ +(A')F.
a(T*Q)y 90

Just as in the development of (63), premultiply (95) by & as
defined in (56) to obtain

(83)

d(BL\, ;L _
_E(aV')+ g | (842)
Y (84b)

80’

Finally, note that the left side of (84a) generates the left
side of (80) and, furthermore, these correspond to all but
the last two terms of each of (82a) and (82b). These must
~ be provided by F. Thus define

Fi(ip,t)
FZ(DCZ’ t)
_ { Dy v (t)+ DyoyOpei(Dysairy)
= Dyyyipa(1) = Donyiges(— Dinates)

F(V,t)=

(85)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-29, NO. 4, APRIL 1982

6

v

Y

TTIOIOY !
é 12
eallae
4
14 7 9 10
—<O— - {
: ) 13
— 43 5 8 11
! ! g ®
f Y
Fig. 2.

We simply remark that the equations of motion for the
general case are composed of (80a) and (80b) with the
right-hand sides replaced by F, and F,, respectively, with
(75a) and (75b) used to replace i, by ¢, and z and v,, by
¢,, and z. In addition the unaltered compatibility con-
straints, (77c) complete the set. Since (73) remain valid, the
initial values ¢,,(0), ¢,,(0), i;,(0), and v,(0) completely
specify the initial conditions required to solve the govern-
ing differential equations. Moreover, once those equations
are solved, i,,(¢) and v,,(¢) are recovered from (75) and all
remaining unknown tree currents and chord voltages can
be determined from the topological equations (81). Con-
stitutive relations provide any other variables.

VI. EXAMPLE

The network Fig. 2, is taken from Chua and McPherson
[4]. It is an example in their paper and serves as an
example of the method proposed herein and as a compari-
son with their method. There is one change to the network.
The controlled sources are replaced by independent sources.
The constitutive relationships are as follows:

=012’ ¢=i; ¢ =4iy,
g9, =803 v,=(g;+1)° 0,=3V
g3 =13 $s=(is—2)° ©v,;=3}if
i,=¢,+1 vy = 3i3 iy =5A.
is=2A 0,,=20V

For the tree 7 choose the set of branches {2,3,7,9,10,
12,13}. Let 1,=(7,9,10,12,13} and 7, = {2,3}. Then £, =
{6,8,11} and Ez ={1,4,5,14}. With this choice, the gener-
alized coordinates are g, and ¢,. The generalized velocities

‘ae ig, ig, 1y, U5, and vy, The topological current relation-

ships are

r 7 - .

iy 0 1 1.0 0 0 O ig

i 1 11 1 1 0 1 ig

iy 0O 1 1 1 1 1 0}] i

io|= 0 01 0 0 0 O ,74_,'; . (86)
i 1 0 0 0 0 0 0] i,

ig 0 061 0 0 0 0 "{l'

i3 Ll 0 0 0 0 0 O
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From (86), the following
D

$

D

5

D

s

Dysy s Dys, =

A 1is constructed as follows:

1
0
1
1
[1 0
Dsm‘_‘l 1]
1
0
0
1

AGRANGE FORMULATION

are obtained:

a=[0 1 1]
s21 =

:22=L

Note that 4 has a right inverse and

Dr

ssll

0

A=

Dgy, = ]
0 1]
0 o)
—is
1 o o]l
0 -1 —1]f'™n
U,
_03
0 '0
0 } 1 :0
0 0].
—_n yHH2_LZ
( l%s22) 0 \ 0
0 +1

Next, define

A = independent columns {I — A4}

1 0
0 -1
=10__0
0 0
0 0

Therefore,
(A) =[] =

and
~ A

The Lagrangian is

L:fq2d02+fq3dv3 +f¢6di6+f¢gdi8+f¢lldill

— &4(D/y2y)" Dy Ligisin ]+ [wpwows ] Ay D, 1 [igiy, ]

0
0 Al}
0|l=]-21.
-1
0 0'1 0 0
1 0:0 —1 0
0 0,0 0 0
0 0,0 0 1
0 —1,0 0 —1
0 1 1 0 0
0 0 0 —1 -1
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Recall that

V=A0+ Aw
or
ic] [o 10 o][w]
ig [=|1]g,+[0 —1 0w (89)
i 0 0 0 0]
and
]
B IR A (Y A
: L "5 ]

Lagrange’s equations are (with z = w, 2 =)

7282, — 2z, —3=10.5z} (91a.1)

5(47=2,~2)* (g7 = 2,) + s —(g;+1)’ =0 (91a.2)
42, + ¢, — (4, +1)° —20 =323 (91a.3)
—28z,3,+ g+ 2, +(gh +1)+2=(z,—2)° (91b.1)

—5(da+d3) (da+ 23)+ 4y +(6h +1)+7=0.
’ (91b.2)

Equations (91) can be solved for ¢, ¢,, 2,, z,, and z; given
the initial conditions g,(0), ¢,(0), ix(0), ig(0), i;,(0), v5(0),
and v5(0), (54). Once g, ¢y, 2, z,, and z; are found then i,
ig, I1>» U5, and v, can be found as functions of time using
(89) and (90). ,

Note the following differences with the method of Chua
and McPherson [4]. Their Lagrangian contains -initial con-
ditions which this method does not. These initial condi-
tions can be viewed as undefined parameters and are not
functions of the generalized coordinates or velocities or
time. The method of [4] results in five second-order equa-
tions which constitute a tenth-order system. Since the order
of complexity is seven, all that is needed is a seventh-order
system. OQur method produces such a system. Chua and
McPherson have two initial conditions in their tenth-order
system which implies 5 “extra” degrees of freedom. They
state that “additional constraint equations have not been
applied.” They are five in number bringing their system to
seventh order in principle.

VII. THE BRAYTON—MOSER EQUATIONS

Again following Cherry we define the resistor and volt-
age source content G, and Gz,,, and resistor and current
source co-content Gxz, and GJp,:

GR-rl(iRl) :/Or,l(iRl) dig, (92a)
Genlin 1) = [0p(1) digy (92b)
G* rea(vr2) =/i§2(vm) dvg, (92¢)

Gea(vy,, 1) = fi'n(t) doy,. (92d)
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The generalized forces Fi(i;,,t) and E(v,,,t) of (97) can
be expressed

. 0 , .
Fl(’Ll’ t) = E‘]' [GEﬂ(DNsllLl 5 t)+ GRT](DNsZILl)] .
(93a)
3 , ,
Fz(”cza t)= le [Gj*z(_ D10, t)+ Gheo(— D/y,v,, )] .

(93b)

If all capacitors are voltage controlled and all inductors
current controlled then it is possible to place all capacitors
in 7, and all inductors in £,. In this degenerate case, all
generalized coordinates are quasi-coordinate defined via
the extension process (that is {Q} is vacuous) and we have

A=0=1 A'=A=1 (94)
and the extended velocity relation becomes
O=w=V. (95)
The Lagrangian assumes the form
L=Ww*(V)+wGV (96)
and Lagrange’s equations are
d ({dL oL
—E(W)‘f‘a—w—F. (97)
In view of (96) these can be expressed
ow*dv _ .
—é-V—ZE~(G G)YV—F=MV—F. (98)

Let n;q, and n,,, denote the number of inductors in £,
and capacitors in 7,, respectively, and define the matrix

J=diag(1,,, .~ 1, ,)

and also the “mixed potential function:”

P(V,1)=P(ig),0,1) =03 Dygyip, — Gfﬁz(_ Dg.vlmvézl)
—Ges(— Diys02 )+ Gey( Dygiiny» 1)

+GR11(DNs2iL1)' (100)

It is easily verified that (98) can be written
2wV _ ,op
ov? | ar v’
which are the Brayton-Moser equations, [15], [16]. In
partioned form (101) reduces to

(101)

aP

0¢y, | diy _ 0P

[aiu] dr 9, (1022)
ach dvc2_~_ aP .

[8062] a v, (102b)

This degenerate case has a special connection to previous
work [4), [5]. It is the link between Chua and McPherson’s
[4] formulation and the formulation of this paper. Our
degenerate case precisely matches the Chua and McPher-
son formulation if they were to choose that all capacitors

(99)
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and all inductors contribute a generalized coordinate. This
selection is the only one in which their Lagrangian does
not contain initial conditions.

VIIL

In the usual way, we define the Hamilton, H( P, ), via a
Legendre transformation of the Lagrangian L(V, Q):

THE GENERALIZED HAMILTON EQUATIONS

a oL
=5 (103)
H(P,0) = PV—L(V,0) (104)

where it is necessary that the implicit relation (103) uniquely
defines ¥ in terms of P and it is understood that V is
eliminated from (104) using (103). The transformation
defined by (103) and (104) also possesses the properties:

)

V= 3P (105)
and
oH _ 3L (106)
90 3Q
In view of (103) and (106), (83) can be written
rp=2H Y'A(A')F. (107a)
0Q’
Equation (105) can be expressed
~_0H
k) — —
T*Q 3P (107v)

Equations (107) are the generalized Hamilton equations
and along with the constraint, (58), provide a complete
description of the network. Using the definitions of T, T*,
(59), it is convenient to rewrite (107) and (58) in the form

9H '

—(J’)’P:F+¢'A+(A’)'F (108a)
{| = a_H
Q=|ap | (108b)
¥ 0 ‘

Premultiplying (108b) by A4 as defined in (56) and (108a)
by A’ yields

_p=ad p (109a)
90’
5 491 (109b)
Q— aP/
A=A (109¢)
90’

Equations (109a) and (109b) constitute a complete descrip-
tion of the network and are a useful alternative form of the
generalized Hamilton equations. Equation (109¢) is identi-
cal to (63b) and explicitly provides the constraint forces in
terms of P and Q. '

The Hamiltonian can be explicitly obtained using the
definition, (103), (104) and the Lagrangian, (79) as follows.
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The momentum is
aL ow* ,
P_BV’-— 3V +G'0 (110)
and the Hamiltonian is

aW B v+ oGy —wH(v)+ 2(Q)- GV

(111)

H(P,Q)=
=W(P—G 0)+2(Q).
Use has been made of the fact that
aWw* aw* "

W(W) = ).
In view of (111), it is clear that the Hamiltonian can be

14
interpreted as the total circuit stored energy.
It is useful to compute

H(P, Q)—

(112)

Mg M5 ypv,). (113)

00
Equations (111) and (113) can be used to determine sta-
bility properties of network.
By a simple change of variables the quasi-coordinates, w,
can be seen to be ignorable. As an alternative to P we can
define the “momenta” variables 7:

s OW* A
=y =P—-G'Q (114)
in terms of which the Hamiltonian can be expressed
H~(7T, Q) é H(P’ Q)IPZW%G'Q- = W('”)+ Z(Q~)‘
(115)
Note that (109a) and (109b) can be written in terms of 7 as
=(A'G- G’A)———A’a—Z——F (116a)
3Q’
b= A "QVK (116b)
Straightforward computation shows that
AG—GA=M (117)

where M is defined by (22) and (33). Moreover, since Z
depends only on Q we can ignore the quasi-coordinates
and rewrite (116) as '

. _aLV_ Z
=My aQ’ F (118a)
o= AaW (118b)

Equations (118) provide a complete description of the
circuit, however, the Hamiltonian structure has been lost.

IX. ExcEss ELEMENTS AND CONTROLLED SOURCES

In this section we extend the formulation to networks
which contain excess elements and controlled sources. If
the network contains a capacitor-only loop, then one of the
capacitors must be placed in the chord. Similarly, one of
the inductors in an inductor only cutset must be placed in
the tree. When excess elements are present we require the
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following:

Hypothesis 5: All inductors in the tree are current
controlled and belong to 7. All capacitors in the
chord are voltage controlled an belong to £,.

In order to deal with controlled sources we replace
Hypothesis 3 by:

Hypothesis 3’: All voltage sources belong to 7, with
controlling current belonging to an element in 1)U .
All current sources belong to £, with controlling
voltage belonging to an element in 7,UL,.

The tree and chord variables are related as follows:

io D, 0 0 0 0
i D31 Dy Divi Doyy Dyg
i=|ip |=|Dw O O 0 0
iRel Dy,, 0 0 0 0
iy D, 0 0 0 0
in
ira
i | =Di, (119a)
ire2
leer
and
v,= — D'v,. (119b)

The velocity transformation relation and matrix, (108),
remain unchanged for networks which include excess ele-
ments and controlled sources. Therefore, the discussion of
Section II remains valid. The excess elements do not con-
tribute any coordinates or velocities to the formulation.
However, they do contribute two co-energy terms to the
Lagrangian. Define the co-energy functions for the excess
elements

T.12(vn) = fqéﬁz( Veg, ) docezf,,cﬁz =-D,.0, (120a)

Utalin) = /‘#27,("&,) di,
The Lagrangian is as before (eq. (79)) except that
WH(V)=T%(0,)+ Ufei(ip) + :E‘lz( 00) + Ut (ipy)-
(121)

The fact that the sources are controlled has no effect on
the velocity transformation matrix or the Lagrangian. These
elements influence the equations only through the gener-
alized forces F(V,t). It is necessary to show that the
controlled source voltages and currents depend only on V,
ie., iy, and v, and ¢. From (119) it is evident that all
voltages belonging to elements in 7,U£, are directly related
to v,, and, similarly, all currents belonging to elements in
7,UL, are directly related to i, ,. Hence,

i =ip(v,,t)

v =05 (i, 1)

(120b)

iLrl =Dysipy*

(122a)
(122b)
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as was illustrated by Chua and McPherson [4]. With this
modification (85) remains valid.

X. SUMMARY AND CONCLUSIONS

In this paper we have established a generalized Lagrange
representation for a broad class of nonlinear RLC circuits
with independent sources. It has been shown that the
generalized Lagrange formulation leads to a system of
ordinary differential equations in a mixed set of gener-
alized coordinates including capacitor charges (gq,) and
inductor fluxes (¢, ,). Moreover, the equations were shown
to be a subset of the network loop and node equations
along with certain additional compatibility equations. Fur-
thermore, the initial conditions required for solution of the
differential equations were shown to be completely speci-
fied by knowledge of the initial charge or voltage of each
capacitor and the initial flux or current of each inductor.
Finally, we established that the solution of the differential
equations did specify all network variables.

The generalized Lagrange equations employed here in-
clude Lagrange multipiiers to handle differential con-
straints and generalized forces to handle the nonconserva-
tive effects. Including the compatibility constraints, the
equations take the form

daL oL - .
T———+ —=—=y'A+(4'YF(T*0, t
YO =0
or, equivalently,
d oL -, oL .
— = | —=— |+ A== =F(T*0,t
m(ur@Y) ag A2
AL,
0Q’
¥4 =0.

The generalized coordinates, 0, are composed of capacitor
charges, g, inductor fluxes, ¢, ,, and additional variables,
w, termed quasi-coordinates, whose derivatives are linear
combinations of the generalized velocities. The generalized
velocities, ¥, comprise capacitor voltages, v,,, and inductor
currents, i;,. Furthermore, the relationship between the
generalized velocities and coordinates is ¥ = T*(, where
the differential operator T* has been defined in the text.

The introduction of quasi-coordinates are necessary when
the generalized velocities are not uniquely defined by the
coordinate velocities, ¢,, and ¢;,. This could be simply a
matter of choice in selecting a particular partitioning of
network elements. Compatibility constraints arise if the
network contains inductor loops or capacitor cutsets,
and /or by virtue of the partitioning of elements.

It has been shown that the Lagrangian is composed of
the usual energy storage terms plus a velocity-coordinate
cross product term. Such cross product terms were noted to
appear in earlier mixed formulations of network
Lagrangians. The cross product term is shown to be non-
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unique and an explicit procedure for selecting it has been
developed.

The link with the method of Chua and McPherson was
shown to be through our “degenerate” case—a case which
can arise only in special circumstances. Moreover, these
circumstances represent the only situation in which the
Lagrangian of Chua and McPherson does not contain
arbitrary parameters related to initial conditions.

We have shown, in Section VII, that if the network
element constitutive equations have the appropriate causal-
ity then the Brayton—Moser equations can be derived from
the generalized Lagrange equations. In Section VIII we
develop the generalized Hamilton equations in the form

TP=9¥¥+WA+(1yF
30’

= 0H
k() —
Te=5p
¥0=0
or, equivalently,
=i p
90’
= -0H
=43
A= A’E—.
90’

We have also shown that the quasi-coordinates are
ignorable so that a minimal order differential system is
obtained whose order is precisely the order of complexity
of the network. In Section IX we extend the earlier results
to networks with excess elements and controlled sources.

Again we should note that we have dealt only with the
formulative aspects of the generalized Lagrange and Ham-
ilton equations for nonlinear RLC networks and have not
touched upon their association with variational principles.

Finally, we should point out that the restrictions im-
posed by Hypotheses 1, 2, 3, 4 are precisely those of [4], [5].
These constraints can become binding when there are
nonbijective elements and /or purely converter multiports
within the network. Consequently, there is motivation for
future studies to relax these conditions.
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