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The Generalized L ,agrange Formulation for 
Non linear RLC Networks 

HARRY G. KWATNY, MEMBER, IEEE:, FRANCIS M . MASSIMO, AND LEON Y. BAHAR 

Abstract-Based on the concept of generalized Euler-Lagrange equa- 
tions, this paper develops a Lagrange formulation of RLC networks of 
considerably broad scope. It is shown tbat the generalized Lagrange 
equations along with a set of compatibility constraint equations represents 
a set of governing differential equations of order equal to the order of 
complexity of the network. In this method the generalized coordinates 
include capacitor charges and inductor fluxes and the generalized velocities 
are comprised of an independent set of capacitor voltages and inductor 
currents. The generalized Hamilton equations are also developed and the 
connection witb the Brayton-Moser equations is established. 

I. INTRODUCTION 

.A CENTRAL issue in formulating Lagrange’s equations 
for electrical networks, as in other types of physical 

systems, is the selection of general ized coordinates and  
velocities. The  natural choice of the earliest Lagrang,e for- 
mu lations of network equations was capacitor charge or 
inductor flux for coordinates and  their formal derivatives 
for general ized velocities. Indeed, such a  selection is used 
in most textbooks [l], [2] dealing with the subject and  is 
legitimately referred to as the classical choice. The  prob- 
lem, of course, is to find a  set of capacitor charges and/or 
inductor fluxes which satisfy the circuit topological. con- 
straints (admissability conditions) and  along with these 
constraints completely specify the network. 
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The  usual procedure [ 1, for example] is to use either flux 
variables or charge variables but not both. In the former 
case the procedure is to identify a  set of independent node  
voltages which are defined as the general ized velocities and  
their integrals (fluxes) are then the general ized coordinates. 
For the case of charge variables, the procedure is to 
identify a  set of independent loop currents which are again 
defined to be  general ized velocities and  their integrals 
(charges) are then the general ized coordinates. 

Although the method outlined above appears to be  sys- 
tematic and  straightforward, the extent of its applicability 
is not at all clear. As a  matter of fact, the procedure carries 
with it inherent lim itations with regard to the type of 
components and  topologies that can be  treated. This is 
readily evident upon  inspection of the worked examples in 
any standard text al though the essential nature of the 
problem is never discussed. MacFar lane [3] took a  ma jor 
step towards clarifying the difficulty. He showed that if it 
were possible to choose a  tree consisting entirely of induc- 
tors, then the inductor fluxes form a  set of general ized 
coordinates in the spirit of the above procedure. Alterna- 
tively, if it is possible to choose a  chord composed entirely 
of capacitors, then the capacitor charges form a  set of 
general ized coordinates. 

The  possibility of relaxing the severe lim itations of the 
above methods by the use of a  m ixed set of coordinates, 
i.e., both charges and  fluxes, was considered by Chua and  
McPherson [4]. This pioneering work departed radically 
from conventional thinking. Their choice of coordinates 
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was inductor charge and  capacitor flux with respective 
velocities of inductor current and  capacitor voltage. Chua 
and  McPherson’s work and  subsequent  extensions by M ilic 
and  No\ k [5] greately enlarged the range of applicability 
of Lagrangian methods to electrical networks. However, 
several questions of a  fundamental nature are raised. O f 
central importance is the specification of initial conditions. 
The  specification of capacitor charge and  inductor flux is 
quite natural, but specification of capacitor flux or induc- 
tor charge is not. This point has been  raised by Szatkowski 
[6]. Thus the question remains, is it necessary to abandon 
the classical choice of coordinates and, if so, why? In 
addition, for certain networks the Lagrangian of [4], [5] 
includes unspecif ied constant parameters related to the 
initial conditions. Once again it is necessary to ask whether 
this undesirable property is actually necessary and, if so, 
what is its mean ing? These and  related questions have not 
been  previously addressed and  form the motivation for the 
studies presented herein. 

The  development of the general ized Euler-Lagrange 
equations by Noble [7] allows the authors to view 
Lagrange’s equations for electric circuits from a  new per- 
spective. It is shown that it is possible to return to the 
classical choice of capacitor charges and  inductor fluxes as 
general ized coordinates. However, the general ized veloci- 
ties are not simply the derivatives of the general ized coor- 
dinates. Rather, they are linear combinations of the coordi- 
nate derivatives and  correspond specifically to a  set of 
physical variables composed of capacitor voltages and  in- 
ductor currents. The  procedure described herein eliminates 
the aforementioned difficulties of Chua and  McPherson’s 
formulation. 

The  possible applicability of the general ized Lagrange 
formulation to electrical networks was suggested by Noble 
and  Sewell[8] and  Jones, Holding, and  Evans [9]: 

In Sections II, III, and  IV, certain assumptions are 
imposed for clarity which do  not affect the general  theory 
in any way. The  networks contain only inductors and  
capacitors and  we do  not admit excess elements. LC net- 
works illustrate the theory without the added  complexities 
of converter elements. It is also assumed that all elements 
are bijective and  in fact linear. This assumption is valuable 
in distinguishing two separate and  important issues that 
can otherwise become confused. Previous authors attempt 
to treat the most general  case from the onset and  m iss 
many insights into the nature of linear LC network prob- 
lems. The  extension to general  nonlinear elements and  the 
inclusion of resistors and  independent sources is accom- 
plished in Section V. 

In Section VI we provide an  example and  in Section VII 
we establish the connection between the general ized 
Lagrange and  Brayton-Moser equations. Section VIII deals 
with the general ized Hamilton equations and  in Section IX 
the necessary mod ifications are made  to incorporate excess 
elements and  controlled sources. 

F inally, we point out that general ized Euler-Lagrange 
equations of [7], [8] arise in the context of the theory of 
complementary and  dual variational principles. We  do  not 

develop the variational aspect of the problem in this paper  
al though we consider it to be  an  important and  interesting 
issue. Indeed, as pointed out by one  reviewer, our treat- 
ment of nonconservat ive elements through the addition of 
general ized forces (Section V) bypasses any link to varia- 
tional principles, just as in the case of the classical Lagrange 
formulation. 

II. THE GENERALIZED LAGRANGE FORMULATION 

Given a  dynamic network %  consisting of time  in- 
variant, linear capacitors, and  inductors, choose a  normal 
‘tree 7  and  let l2 be  its cotree. Recall that a  normal tree is a  
tree containing a  maximum number  of capacitors and  a  
m inimum number  of inductors [lo]. We  begin by restrict- 
ing the discussion to networks without excess elements. 
That is, capacitor-only loops and  inductor-only cutsets are 
not admitted. This condition will be  relaxed in Section IX. 
If no  excess elements are al lowed then a  normal tree 
contains no  inductors. We  further subdivide r and  C into 
r,, r2 and  C,, C,, respectively, and  impose the following 
condition: 

Hypothesis I: elements in e, do  not form fundamen- 
tal loops with elements in 7,. 

Our perspective is to view the capacitor charges in r,, qc,, 
and the inductor fluxes in e,, $L2, as general ized coordi- 
nates and  the capacitor voltages in r2, vc2, and  the inductor 
currents in C,, iL,, as general ized velocities. In what follows 
we will establish the conditions under  which such a  point 
of view is appropriate. 

What  distinguishes this approach, of course, is our defi- 
nition of general ized velocities, the implications of which 
will be  discussed at length below. Central to the develop- 
ment of these ideas is the relationship between the gener-  
alized velocities and  the derivatives of the general ized 
coordinates which we shall refer to as the coordinate veloci- 
ties. We m ight also remark at this juncture that the im- 
portant consequence of Hypothesis 1  is that the coordinate 
velocities &r are related only to the general ized velocities 
i,, and not to any of the currents iL2, and the coordinate 
velocities bL2  are related only to the general ized velocities 
V c2 and  not to any of the voltages vcl. Therefore, the 
relationship between our general ized coordinates and  
velocities assumes a  particularly simple structure which will 
become evident later in this section when it is defined. 

The  tree and  chord elements are related by the network 
dynamical transformation matrix [ 111  D as follows: 

i, = Di, (1) 
v,= - D’v, (2) 

where 4s Dsn 4, 
D= [ D,,s D,,,, 0  1 (3) 

Des 0 0 

i,, v, are the tree currents and  voltages, respectively, and  
i,, vc are the chord currents and  voltages, respectively. Due 
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Fig. 1. Generalized coordinates and velocities. 

to our assumption of no excess elements, D,, and D,, are 
null matrices. Also, D,,, D,,,, and D,,, are null matrices 
since there are no converter elements. Therefore, (1) and 
(2) become 

i, = D,,i, (4 

v, 7 - D’g,. . (5) 

Equation (4) can be subdivided to accommodate the Idiffer- 
ent classes in Fig. 1, i.e., 

Note that a zero appears in the top right corner of the D,, 
matrix. This is due to the restriction that the inductor 
elements in C, when placed into the tree do not form loops 
which contain capacitor elements in 7,. Similarly (5) can be 
written 

Since the relationship between the generalized coor- 
dinates and velocities is not a classical one, it is reasonable 
to assume that the classical Lagrange equations may not be 
appropriate. This leads to the use of the so-called gener- 
alized Lagrange equations developed in Noble [7] and later 
appeared in Noble and Sewell[8]. The generalized Lagrange 
equations can be written 

i3L +aL=o 
Ti3(PQ)’ aQ’ (10) 

where 
T*Q=V (11) 

Q generalized coordinate column vector, 
V generalized velocity column vector, 
L Lagrangian, 
T linear operator, 
T* formal adjoint of T. 

Equations (10) and (11) can be interpreted as the classical 
Lagrange equations when T= - I(d/dt) which implies 
that P = I(d/dt) [8]. The Lagrangian L is then the stan- 
dard Lagrangian. 

One point concerning notation is worth mention. We 
shall always define the Lagrangian L as a function of the 
generalized coordinates and generalized velocities, i.e., L = 
L(V, Q). However, when L is used in (10) it is to be 
understood that PQ replaces V, that is, L = L(T*Q, Q). It 
is occasionally useful to write (10) in the form 

D’ssll D’ssZl Vcl 

0 I[ 1 Dfssz2 Vc2 ’ 
(7) 

It is convenient to regroup (6) and (7) as follows. The 
upper part of (6) and the lower part of (7) provide a 
relationship between the generalized coordinates and veloc- 
ities: 

(8) 
where 

D ssl I 0 
A= 

0 1 -%22 . 

in which case it is intended that L be expressed in terms of 
V and Q. Equations (10) provide the differential governing 
equations. The interpretation (lOa) will allow us to associ- 
ate these equations directly with the loop and node equa- 
tions (9). 

The remaining equations are 

Our major task is to define T and L appropriately to 
arrive at the correct equations of motion. In subsequent 
sections we shall show that this can indeed be accom- 
plished and will prescribe a procedure for doing so. Fur- 
thermore, it is clear that (11) must represent the unique 
specification of generalized velocities in terms of coordi- 
nate velocities to be established from the velocity transfor- 
mation relation, (8). In the following section we consider 
the simplest case where A has an inverse. The general case 
is considered in Section IV. 

III. INVERTIBLE VELOCITY TRANSFORMATION 
MATRIX 

VLI = - %l ,vc, - D;s2,%2 (94 

i,, = Dss2,iL~ + %22iL2- (9b) 
Equation (8) relates the coordinate velocities and the 

generalized velocities. We shall refer to (8) as the velocity 
transformation relation and to the matrix A as the velocity 
transformation matrix. Moreover, (8) is to be usled to 
uniquely establish the generalized velocities as a function 
of the coordinate velocities. This is trivially accomplished 
when A has an inverse, but when that is not the case we are 
led to several subtle and intriguing results which are de- 
layed until Section IV. the operator T and the definition of the Lagrangian. 

In this section, it is assumed that the linear operator A 
has an inverse. It is true that A has an inverse if and only if 
D ssll and Dis22 have inverses. This implies that 7, and C, 
have the same number of elements and also that r2 and l?, 
have the same number of elements. These are substantial 
restrictions on the allowable network configurations. How- 
ever, this special case is a convenient vehicle for introduc- 
ing several important ideas. We consider now the choice of 
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The  velocity transformation equation (8) can be  written 

-$Q=AV 
where 

J,7= iL, [ 1  v ’ the general ized velocity vector 
c2 

Q= ;, , [ 1  the general ized coordinate vector. 

Since A - ’ exists, (12) can be  expressed 

(12) 

(13) 

Upon comparison with (11) we are motivated to define the 
operator 

,*=,-4 
dt 

and, therefore, 

(14b) 
The  general ized Lagrange equation (10) now becomes 

. 
(15) 

Mu ltiplying (15) by A’ and replacing (13) into ( 15) yields 

-- jt $$ +A==O. [ 1  3Q’ 06) 
Replacing V and  Q  by their components and  dividing (16) 
into node  and  loop equations, the following equations 
result: 

(174 

(17b) 

We now consider a  class of quadratic Lagrangians 
defined as follows: 

where 

2  submatrix of the inductance matrix L, 
3 submatrix of the elastance matrix S, 
f submatrix of the inverse inductance matrix I, 
c submatrix of the capacitance matrix C, 
G  cross product matrix. 

The  Lagrangian of (18) is a  standard one  except for the 
cross product term, Q’GV. The  cross product term is 
necessary when Dss2, # 0. As can be  seen in MacFar lane 
[3] and  Jones and  Evans [ 121, their Lagrangian formulation 
leads only to loop equations or node  equations. Therefore, 

no  cross product term appears. A cross product term does 
appear  in Chua and  McPherson [4] and  M ihc and  Novak 
[5] but there is no  discussion as to its necessity or how it 
was chosen. In the following we will show how to define 
the cross product term and  will show that it is not unique. 

Our purpose is to demonstrate that the formulation 
described above does indeed lead to the network equations 
of motion with an  appropriate choice of G . Rewriting (18) 
and  inserting the components of V and  Q , results in 

Evaluating (17a) using the Lagrangian of the form of (19) 
yields 

- di,, dh2 
-Lx-G;, dt - - DA, ,&c, +  DA, ,G,,vc, 

+(% lGll -GXsll)iLl =O. 
(20) 

However, (20) is a  voltage loop equation and  cannot con- 
tain any currents. Therefore, the last term in (20) must be  
zero for all i,, at any time, t. Thus results in the first 
restriction for the G  matrix, i.e., 

% ,G,,--G;,D,,,,=O. (20 
Equation (20) becomes 

- di,, dh2 
-LyjyG;, dt - - %,&c, +  %,,G,zvc2 =  0. 

From (S), 
(22) 

$L2 =  - %22%2.  (23) 

Replacing (23) into (22) and  collecting terms yields 

(24) 
Substituting the appropriate constitutive relationships into 
(24), it is easily seen that (24) is the topological voltage 
loop equation (9a) provided 

- KS21 = @Y&,2 +  G;s,,D,‘,,,). (25) 
Equation (25) is the second restriction for the matrix G . 

Evaluating (17b) using the Lagrangian of (19) yields the 
following equation: 

- 42  

-’ dt - - Gi2% + 422f+L2 - %22G21iLl  

+0%24’s,, - %22G22 kc2 =  0. (26) 

However, (26) is a  current node  equation and  cannot 
contain any voltages. Therefore, the last term in (26) must 
be  zero for all vc2 at any time, t. This results in the third 
restriction for the G  matrix, i.e., 

G;,D,‘,,, - Dss22G22 = 0. (27) 
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Equation (26) becomes 

- 42 

-’ dt 
- - Gi2f$ + D,,,,~c#B,, - D,,,,G,,i,, = 10. 

From (S), 

dqc, -D -- 
dt 

j 
ssll LI. 

Replacing (29) into (28) and collecting terms yields 

-p 
$ + %22hL2 - (Dss22G21 + Gi2411 )iLl =: 0. 

(30) 
Substituting the appropriate constitutive relationships into 
(30), it is easily seen that this equation is the topological 
current’node equation (9b) provided 

- Dss2’ = (%22G2, +W~,II)- (31) 
So far we have the following. The choice of T and L yields 
the correct loop and node equations provided the four 
restrictions, (21), (25), (27), and (31), are observed. These 
can be arranged into the following matrix equation: 

-[ 

D ssll 0 I[ 0 - Dis2’ 

0 - Ds’s22 = Dss21 0 1 * (32) 
Equation (32) can be written as follows: 

A’G-(A’Gj’=M (33) 
where M is a skew symmetric matrix defined in (32). 
Equation (33) states a well-known fact that a square rnatrix 
minus its transpose yields a skew-symmetric matrix. How- 
ever, another fact is that a square matrix plus its transpose 

’ yields a symmetric matrix. Therefore, ’ 

(A~G)+(A’G)‘=N (34) 
where N is an arbitrary symmetric matrix. 

The solution for G is now apparent. Adding (33) and 
(34) yields 

A’G=i(M+N). (35) 
Therefore, since A has an inverse, then 

G=+(A’)-‘(M+N). (36) 
It is now obvious that G is not unique since N is arbitrary. 
Equation (36) can produce Chua and McPherson’s [4.] and 
MiliC and Novak’s [5] cross product term with the proper 
choice of N. 

For this section, the choice of N and consequently G is 
as follows: 

(37) 

r 0 01 
(38) 

Therefore, if A has an inverse the only cross product term 
is - ~~2Ds;~2%2liLl* The Lagrangian of (19) is then 

L = +iL,LliL, + ~v~2dv,2 - ++‘L2i;+L2 - $q:,fqc, 

- +L2Q22Dss21iLI. (39) 
The equations of motion can be obtained by replacing 

the definition of G, (38) into (30) and (24). This produces 
the following equations: 

- 42 
- CT + Dss22f~L2 + %21iLl = 0 (404 

and 
- di,, 

- Lx - 4’s,,&,, - Q’s,,vc2 = 0. (40’4 

In order to solve (40) it is necessary to obtain equations of 
motion in terms of the generalized coordinates and their 
derivatives. Therefore, by replacing (13) into (40), the 
following equations are obtained: 

and 

- %‘,&,- %$4c’+ ~,s2lms22)-‘i5L2 = 0. 

@lb) 

Notice that the initial values necessary to solve these 
equations are q,,(O), $J~~(O), vc2(0), and iL,(0) since eL, and 
i,, can be computed from vc2 and i,, using the velocity 
transformation relation, (13). All these quantities are physi- 
cally meaningful. 

IV. THE GENERAL VELOCITY TRANSFORMATION 
MATRIX 

The purpose of this section is to extend the procedure 
described above to the general case where the velocity 
transformation matrix A does not have an inverse. Our 
objective is to use the velocity transformation relation, 
(12), to establish a unique specification of the generalized 
velocities in terms of the coordinate velocities. There are 
two difficulties. The first is that there may not exist any 
solutions of (12) for I’. We shall see that solutions for I’ 
exist only if certain “compatibility” constraints are im- 
posed on the coordinate velocities. The second problem is 
that if a solution to (12) exists it may not be unique. In 
general it will be necessary to extend the coordinate vector 
in order to assure a unique solution. In such a case we can 
associate with A‘a pseudo-inverse A+ which has the prop- 
erty 

AA+A= A. (42) 
Furthermore, let 

A=LR (43) 
be a rank factorization of A where L is a matrix m X k and 
R is a matrix k X n. L and R can always be found for any 
m X n matrix A of rank k [ 131. Since L and R are of- full 
rank they possess, respectively, left and right inverses L’ 
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tion and  R’. A pseudo-inverse of A is then 
A+ = R’L’. w 

We further define the nX(n-k) and (n-k)Xn 
matrices A and  Qr by a  rank factorization of {I - R’R} : 

{I - R’R} = A@. (45) 
Similarly, define the m  X (m - k) and (m - k) X m  matrices 
r, Z  by a  rank factorization of {I - LL’} : 

{I-LL’}=Iz. (46) 
Note the following properties of these matrices: 

(594 
and, therefore, 

As in the previous case in which the velocity transforma- 
tion matrix was invertible, the velocity transformation re- 
lation, (45), leads to the definition of general ized velocities 
in terms of the operator P, (57) and  (59a). However, in 
this case we are also led to an  extension of the number  of 
general ized coordinates (55) and  to a  set of constraint or 
compatibility equations, (58). It should be  noted that if the 
velocity transformation matrix has a  left inverse then no  
additional coordinates are required. On  the other hand, if 
it has a  right inverse then there are no  compatibility 
constraints. 

The  compatibility constraints are of differential form 
and  since they are obviously integrable they are by defini- 
tion holonomic. However, if (58) were integrated (as is 
common practice when dealing with holonomic con- 
straints) the result would introduce precisely the same 
number  of arbitrary constants as the number  of general ized 
coordinates we would hope  to eliminate. Consequently 
there would not be  a  reduction in the number  of degrees of 
freedom. Alternatively, the method of Lagrange mu ltipliers 
can be  used to incorporate these differential constraints. 

Lagrange’s equations must be  altered to accommodate 
the use of Lagrange mu ltipliers [ 141. We  shall consider the 
general ized (10) mod ified as follows: 

[ I s [R’ A]=1 

1 1  k1 [L r]=I. 
LAJ 

It is now possible to summarize the solution properties of 
(12). A solution of (12) exists if and  only if 

zQ=o. (49) 
If (49) holds, then all solution of (12) take the form 

V = R’L’O + Ati (50) 
where 3  is an  arbitrary (n - k) vector. 

It is convenient to collect (49) and  (50) into the form 

(51) 
and note its inverse 

(52) 
(60) For convenience, define the matrices: 

@=[A: *I=[: ;] (53) where #  is defined in (57), X is a  column vector of Lagrange 
mu ltipliers, and  the equations are written in terms of the 
extended coordinate vector 0. Using the definitions of T, 
P given in (59) leads to 

and  

(61) 
and also the extended coordinate vector, d, 

Q=[ 1 - Q w * 
The  variables w will be  referred 
Equation (52) can now be  written 

(i=Av. 

(55) 

to as quasi-coordinates. 

(56) 

Making use of (57) and  premultiplying (6 1) by & defined in 
(56) yields 

We  will refer to 
Equation (5 1) can 

(56) as the extended velocity relation. 
be written 

&gv (57) 
g&=0. (58) 

Using the properties of A (following (55)), (62) reduces to 

@a) 

Equations (56) and  (57) define the relationship between the 
general ized velocities and  coordinate velocities in both 
directions. The  compatibility constraints, (58), must hold for 

(63b) 

V to exist. Compar ing (57) with (11) motivates the defini- Equation (63b) explicitly provides the solution for the 
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Lagrange multipliers X, whereas (63a) does not contain X. 
Moreover, (63a) can be divided into two parts upon use of 
the partitionings of V, 0, and k 

We have yet to define the Lagrangian and to show that 
(64) along with the compatibility equation (58) do provide 
the governing equations for the network. Again we con- 
sider a class of quadratic Lagrangians, now of the f~orm 

L = +ii,LiL, +3vf2Cvc2 - &#JL,,F+~, - +qf,Qq,, 

Notice that the new coordinates, w, appear only in the 
cross product term and, as before, the first four terms in 
(65) correspond to the “kinetic” energy minus the “ poten- 
tial” energy and depend only on the original generalized 
coordinates and generalized velocities. 

As in Section III the determination of the G matrix can 
be obtained by evaluating (64) using the Lagrangian of 
(65). This development follows that of Section III closely 
with similar results except that (35) is extended to incorpo- 
rate the w coordinates. Therefore, the equation for the 
cross product term is 

IG=+(M+N) (66) 
where M and IV are the same matrices as in Section III 
(equations (32), (37)). Since k has a left inverse, (66) can be 
easily solved for G as follows: 

G=f(k’)‘(M+ N). (67) 
Evaluating (67) using (37) for N, G is obtained: 

G=[t-L'isi;%21 !]- (68) 

Equation (65) becomes 

L = iii, Li,, + $vf2& c2 - +#$.25#$2 - tqf,S% 

- +~2(DSs22)+‘Dss21iL1 + w;h;Dss2,iLl. (69) 
The Lagrangian (69) can be employed in (64) to obtain 

-L~-D;~,,(-DD;~,~,~+A~~+) 

- Ds~,,~qc, + @~A~D,,,,i,, = 0 (70a) 

- e$f + D,,,,( fGL2 + (D~s22)+‘%21iLl) 

+ ip~A~Ds,2,iL, = 0. (70b) 

In order to proceed it-is useful to note certain identities. 

Expanding (52), it can be seen that 
s 

0,,1,,,1-1 i:: t:] =[: y,] 

(71) 

where I, and I, are identity matrices of dimension s X s and 
t X t, respectively. Therefore, 

x%1’ + UT = 1s (724 

W'2=Otxs Wb) 

A2%=O,xs (724 

ms22)+D6s22 + A,@2 = 1,. (72d) 

From the standard velocity relation, (54), we have 

&I = DsslliLl (734 

4L2= -%22vc2 (73b) 

3 = ip,i,, + a2vc2. (734 
Now, using (72c), (73b), (73c), and (72d) in (70a) yields 

- di,, 
-’ dt - - %l~G- D;s2'%2 = 0. (744 

Using (72d) in (70b) yields 

- du,2 
- CT + %22r+L2 + Dss2,iLl = 0. (74b) 

Equations (74a) and (74b) are recognized as sets of loop 
and node equations, respectively. Compare (74a) with (9a) 
and (74b) with (9b). 

It remains to be shown that the mixed set of loop and 
node equations, (74a) and (74b), along with the compatibil- 
ity equations (58) form a complete set of network equa- 
tions. To see this we rewrite (74a) and (74b) in terms of the 
generalized coordinates and their derivatives by using the 
definition of generalized velocities, (57), in the form 

iLl = 02, A + AI* 
V c2 = -(D;S22)+$L2+A2k 

Using these relation in (74a) and (74b) yields 

- LD:, ,&I - h*ii, - D’s,, &c, + 4‘s, &c, 

+D~~~,(D~~~~)+~L~-DS~~IA~~== 

~(Ds)s22)+~Lz-~A2~,+Dss22~~L2 

+ Ds,,,D:, I&I + %,,A13 = 0. 

Equations (76) can be reduced in order by defining 
z = kit = +,i,, + (p2vc2. 

Therefore, (76) can be written 

- ,fDs;, &, - LA,i - D,‘,, $qc, 

+ Q's2,(Q's22)++~2 - %21A2z=O 

(754 
G-4 

@a) 

@b) 

(774 
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+ %z,DhL, + D,,,,A,z = 0. (77b) 
For completeness (58) can be  rewritten as 

\k,&, + !P*&, + \k3z = 0. (77c) 
We  now summarize several important facts. F irst, (77a) 

and  (77b) comprise n  equations and  (77~) represents an  
additional m -k equations for a  total of n  + m  -k. The  
vectors qc,, eL2 comprise m variables and  z constitutes an  
additional n  - k for a  total of n  + m - k variables. 

Equations (77) require 2m + n  - k initial conditions. 
Specifically, these are qclKO, 4,,(O), ~L2(%~L2(0), ad 40). 
Note that from (73) i,,(O) and n,*(O) provide &i(O), &(O), 
and  z(0). Consequently, the initial values q,,(O), @ I&O), 
iL,(0), and u,*(O) completely specify the initial conditions 
required for (77). 

The  solution of (77) provides qc,, Qcl, +L2, &, and z for 
all t. Equations (75) allow i,, and ucz to be  computed from 
&,, i,, and  z. Thus the set of differential equations (77) 
specifies all tree branch voltages (or capacitor charges) and  
chord currents (or inductor fluxes), i.e., completely solves 
the network. 

Thus, the formulation prescribed above is complete in 
the sense that specification of all capacitor charges or 
voltages and  inductor fluxes or currents specifies the initial 
conditions required to solve (77) which in turn provides a  
complete solution of the network. 

V. NONLINEARANDCONVERTERELEMENTS 

The  previous discussion was restricted to linear, LC 
circuits. These lim itations will now be  removed. F irst, our 
formulation will be  extended to nonlinear LC elements and  
subsequently extended to include resistors and  source ele- 
ments. 

Nonlinear Elements 

Since general  nonlinear elements may not be  bijective we 
place further restrictions on  the element classes defined in 
Section II to account for the causality of the constitutive 
relationships: 

Hypothesis 2: T, does not contain any voltage con- 
trolled capacitors and  r2 does not contain any charge 
controlled capacitors. Similarly, C, does not contain 
any flux controlled inductors and  C, does not contain 
any current controlled inductors. 

W ith these addition restrictions on  the .classification of 
network elements the previous discussions regarding sys- 
tem topology remain applicable. Specifically, the definition 
of the operators P, T, (59) remain unchanged.  The  
Lagrangian, (65), however, is mod ified as follows. Follow- 
ing Cherry [17] define the capacitor co-energy, inductor 
co-energy, capacitor energy, and  inductor energy, respec- 
tively: 

h&L2) = /i;*hz) 42. 
Now, the Lagrangian is 

(78d) 

where 
L(V,@=W*(V)-Z(Q)+@GV (794 

C-b) 
represents. the total co-energy associated with the capaci- 
tors in r2 and  inductors in C,, and  

z(q)=T,,,(q,,)+u,~*(~,*) (79c) 
represents the total energy associated with the capacitors in 
7, and  inductors in !Z2. Note that the cross product term in 
(79a) remains the same as that of the linear case, (65). This 
is to be  anticipated since the cross product matrix G  
depends only on  the topology and  not on  the constitutive 
relationships. 

Using the Lagrangian, (79), and  evaluating (64) leads to 
the following nonlinear counterparts to (77): 

+ D,,22iLk+L2 > = 0 . @Ob) 
Note that @ ,,/ai,, is a  function of i,, and  can thus be  
expressed as a  function of gc, and  z using (75a). Similarly 
aqc2 /auc2 is a  function of uc2 and  can be  expressed as a  
function of $,, and  z using (75b).Finally, the compatibility 
constraints, (77c), remain unchanged and  completes the set 
of network governing equations. The  discussion following 
(77) applies here as well. 

Converter Elements 

The  results of the previous section will now be  extended 
to include independent current and  voltage sources and  
nonlinear resistive elements. To  accomplish this it is neces- 
sary to place additional restrictions on  the classification of 
elements defined in Section II. We  assume that following: 

Hypothesis 3: All independent voltage sources belong 
to 7, and  all independent current sources belong to 
c 2’ 

Hypothesis 4: All resistors are divided between T, and  
C, such that all current-controlled resistors belong to 
ri and  all voltage-controlled resistors belong to C,. 
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It is possible to approach the inclusion of nonconserva- 
tive elements as contemplated here in either of two ways: 
through modification of the Lagrangian or through the use 
of so-called generalized forces. We shall take the latter 
course. In order to see what is required, the topological 
network equations (1) and (2) are written as follows, 
taking into account the topological restrictions specified in 
Hypotheses 1, 2, 3, 4: 

I:::;;-I”’ ;j D; 4;][ i]. (81,,) 

We simply remark that the equations of motion for the 
general case are composed of (80a) and (80b) with the 
right-hand sides replaced by F, and F,, respectively, with 
(75a) and (75b) used to replace i,, by &, and z and uc2 by 
&,, and z. In addition the unaltered compatibility con- 

Note that the velocity transformation relation (8) is a straints, (77~) complete the set. Since (73) remain valid, the 
subset of (81) and remains the basis for specification of the initial values q,,(O), &(O), iL1(0), and ~~~(0) completely 
velocity transformation matrix A, and consequently for the specify the initial conditions required to solve the govem- 
operators T*, T. There is no change in our choice of ing differential equations. Moreover, once those equations 
generalized coordinates nor velocities. Furthermore, the are solved, i,,(t) and oc2( t) are recovered from (75) and all 
Lagrangian is not changed from (79). remaining unknown tree currents and chord voltages can 

In view of the earlier discussion it is to be anticipated be determined from the topological equations (81). Con- 
that Lagrange’s equations will produce the loop equation stitutive relations provide any other variables. 
which specifies uL1 and the node equation which specifies VI. EXAMPLE 
ic2, i.e., 

The network Fig. 2, is taken from Chua and McPherson 
uLl= - %,uc, - D,‘,,,uc, - %,VE, - %2u~71 @a) [4]. It is an example in their paper and serves as an 
ic2 = Qs21iLl + %22iL2 + DsNliJ2 + QN2iRe2. (82b) example of the method proposed herein and as a compari- 

Notice that the last two terms of each equation are newly 
son with their method. There is one change to the network. 
oh 

added (compared to (9)) and will not be generated by 
e controlled sources are replaced by independent sources. 

Th 
Lagrange’s equation in their present form, (60). Conse- 
quently, we modify, (60) to include generalized forces, 

*F( V, t): 

e constitutive relationships are as follows: 
i, = (u, +2)3 +b = iz +,,=4i 11 

q2 = 84 u,=(q,+1)5 u*2=3v 

T aL + aL = WA + @ ‘)‘F. 
a@-$)! a@ (83) cl3 = 4 

i,=Cpi+l 

+8=(i8-2)5 u13=iit3 

u9 = 3ig’ i,, = 5 A. 
Just as ir 
d-’ -. 

t the development of (63), premultiply (95) .by & as 
.efined m  (56) to obtain 

i,=2A u,,=2ov 
For the tree r choose the set of branches {2,3,7,9,10, 

(84a) 1213). L t e 7, = {7,9,10,12,13} and r2 = {2,3}. Then C, = 
{6,8,11} and l?, = {1,4,5,14}. With this choice, the gener- 

~‘aL=h 
a& . (84b) 

alized coordinates are q, and &,. The generalized velocities 
ae i,, i,, i,,, u2, and us. The topological current relation- 

-a 

Finally, note that the left side of (84a) generates the left 
ships are 

r 
side of (80) and, furthermore, these correspond to all but 
the last two terms of each of (82a) and (82b). These must il 0110000 ib - 

be provided by F. Thus define ‘2 1111101 43 [ WL,, t) 1 13 0 1 1 1 1 1 0 i,, 
- 

F(V, t)= 110 . = 0 0 1 0 0 0 0 
M&2, t) 

;;; 
52 1 0 0 0 0 0 0 i,, 
- 

% “ElW + %s2%71%2iLI) i9 0 0 1 0 0 0 0 -il- 
= 

. (85) - - - QNliJ2(t) DsN2iRd %2uc2) I il3 1000000 
L - 

. (86) 



KWATNY et a/. : GENERALIZED LAGRANGE FORMULATION 

From (86), the following are obtained: 

D dl=[o 1  11 

%hr1= [ 1 0  1 1  1 
D = 

SN2 [ 1 0 1 
D NSl, DNS2=[; ; ;]. 

A is constructed as follows: 

1 u3 

Note that A has a  right inverse and  

r 
A’= 

D’ ssll 0 

0 (-Q’s,,)’ .‘I 
Next, define 

=AV. 

(87) 

0 ’ 0 
1 O  0  I 0  
-- 0  i-0 
0  +1 

A = independent columns { 1- A’A} 

1 0  0  
0  -1 0  

Z  0  0  0  
= ------- 0  0  1  I ;I. I 2 

-0 0  -l_ 
Therefore, 

0 0’1 0  0  
1  0  ” 0  -1 0  
0 0 ; 0  0 0 
0 0,o 0  1  
0  -110 0  -1 

and  

[ --A-- 1 0 0  0  -1 -1 
j= 91 G2 i-O-O- ----- 0 0 . 

001 0  0  
Lo 0  0  1 OJ 

The  Lagrangian is 

Recall that 

or 
V = A’0 + A$ 

and  

Lagrange ‘S equations are (with z = ti, i = r+) 

‘b 

‘8 

Ill 

7zpi, - z3 - 3  = 0.5z: 

229  

(89) 

(90) 

(91a.l) 

5(47 - z2 -2)4(q7-i2)+&4-(q7+1)5=0 (91a.2) 

4i, + cj4 - ( q7  + 1)’ - 20  = 3235  . (91a.3) 

-24z3i3+&+z,+(~~+1)+2=(z3-2)3 (91b.l) 

-5(+4+q3)4($4+f3)+&+(+;+1)+7=0. 
(91b.2) 

Equations (91) can be  solved for q7, +4, z,, z2, and  z3 given 
the initial conditions q7(0), $4(O), ib(0), i,(O), i,,(O), u2(0), 
and u3(0), (54). Once qj, +4, z,, z2, and  z3 are found then ib, 
. 
18, I,,, 3, and u3  can be  found as functions of time  using 
(89) and  (90). 

Note the following differences with the method of Chua 
and  McPherson [4]. Their Lagrangian contains -initial con- 
ditions which this method does not. These initial condi- 
tions can be  viewed as undef ined parameters and  are not 
functions of the general ized coordinates or velocities or 
time. The  method of [4] results in five second-order equa-  
tions which constitute a  tenth-order system. Since the order 
of complexity is seven, all that is needed  is a  seventh-order 
system. Our method produces such a  system. Chua and  
McPherson have two initial conditions in their tenth-order 
system which implies 5  “extra” degrees of freedom. They 
state that “additional constraint equations have not been  
applied.” They are five in number  bringing their system to 
seventh order in principle. 

VII. THE BRAYTON-MOSER EQUATIONS 

Again following Cherry we define the resistor and  volt- 
age  source content GR7, and  GET,, and  resistor and  current 
source co-content G ;e2 and  GTe2:  

GR,,(iRl) =/4(iRl) diRl (92a) 

GETl(iEl) t) =/G(t) 61  (92b) 

G*Re2h> = /ik2(uR2) 62 (92~) 

%2(92 9 t) =/ii2(r)duJ2. (92d) 
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The generalized forces Fl(iL1, t) and F2(uc2, t) of (!)7) can 
be expressed 

4(iL,.t)=~[GEI,(DN~,iL,,t)+G~II(DNs2iL,)I. 
LI 

(93a) 

F,(D,,d=& f2 PJ*22(- D;Nl”c23 t)+G:f2(- D,N,!“c2)1. 

(93b) 
If all capacitors are voltage controlled and all inductors 

current controlled then it is possible to place all capacitors 
in r2 and all inductors in e,. In this degenerate c<ase, all 
generalized coordinates are quasi-coordinate defined via 
the extension process (that is {o} is vacuous) and we have 

A=(a=I A’=A=I (94) 
and the extended velocity relation becomes 

cj=w=v. (95) 
The Lagrangian assumes the form 

L=W*(V)+w’GV (96) 
and Lagrange’s equations are 

In view of (96) these can be expressed 

(97) 

~Z=(G’-G)V-F=MV--F. (98) 

Let nLel ad ncT2 denote the number of inductors in Cl 
and capacitors in 72, respectively, and define the matrix 

J= diag(LLe,, -I,,,,> (99) 
and also the “m ixed potential function:” 

P(V, t) = P(i,,, uc2, t> = u~2%21iLl - G2( - DiNl&,) 
-G~e2(-D,N2u,2)+G,,,(D~~,i~,,t) 

+%(DN~~~LI)- (100) 

It is easily verified that (98) can be written 

which are the Brayton-Moser equations, [15], [16]. In 
partioned form (101) reduces to 

(102a) 

aqc2 duc2 _. ap [ 1 - -_-- 
auc2 dt %2 . (102b) 

This degenerate case has a special connection to previous 
work [4], [5]. It is the link between Chua and McPherson’s 
[4] formulation and the formulation of this paper. Our 
degenerate case precisely matches the Chua and McPher- 

Equations (109a) and (109b) constitute a complete descrip- 
tion of the network and are a useful alternative form of the 
generalized Hamilton equations. Equation (109~) is identi- 
cal to (63b) and explicitly provides the constraint forces in 
terms of P and 0. 

The Hamiltonian can be explicitly obtained using the 
son formulation if they were to choose that all capacitors definition, (103), (104) and the Lagrangian, (79) as follows. 

and all inductors contribute a generalized coordinate. This 
selection is the only one in which their Lagrangian does 
not contain initial conditions. 

VIII. THE GENERALIZED HAMILTON EQUATIONS 

In the usual way, we define the Hamilton, H( P, &, via a 
Legendre transformation of the Lagrangian L( V, 0): 

003) 

H(P,@AP’V-L(V,& (104 

where it is necessary that the implicit relation (103) uniquely 
defines V in terms of P and it is understood that V is 
eliminated from (104) using (103). The transformation 
defined by (103) and (104) also possesses the properties: 

005) 

and 

(106) 

In view of (103) and (106), (83) can be written 

TP = g + I//X( A’)‘F. 

Equation (105) can be expressed 

(107a) 

(107b) 

Equations (107) are the generalized Hamilton equations 
and along with the constraint, (58), provide a complete 
description of the network. Using the definitions of T, T*, 
(59), it is convenient to rewrite (107) and (58) in the form 

(108b) 

Premultiplying (108b) by A as defined in (56) and (108a) 
by A’ yields 

(109a) 

(109b) 

(109c) 
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The  momentum is 
aL aw* 

P====+G’o 

following: . 

(110) 
Hypothesis 5: All inductors in the tree are current 
controlled and  belong to 7,. All capacitors in the 

and  the Hamiltonian is chord are voltage controlled an  belong to C,. 

H(P,&)=%g V+@GV-W*(V)+Z(Q)-@GV In order to deal with controlled sources we replace 
Hypothesis 3  by: 

=W(P-G’@+Z(Q). 

Use has been  made  of the fact that 
w aw* 

t-1 
+v-w*(v). av  

ow 

(112) 

Hypothesis 3’: All voltage sources belong to 7, with 
controlling current belonging to an  element in T,UC ,. 
All current sources belong to C, with controlling 
voltage belonging to an  element in T~U&,. 

The  tree and  chord variables are related as follows: 
In view of (11 l), it is clear that the Hamiltonian can be  r. i r 
interpreted as the total circuit stored energy. 

It is useful to compute 

ti(P,Q)= %P+Z”= -w(v,t). (113) ic= 

Equations (111) and  (113) can be  used to determine sta-’ 
bility properties of network. 

D ssll 0  0 

D ss21 %22 DsNl 

D NSl 0 0 
D Ns2 0 0 

DES 0 0 

0 
D sN2 

0 
0  
0  

0  
D SE 

0 
0  
0  

By a  simple change of variables the quasi-coordinates, w, 
can be  seen to be  ignorable. As an  alternative to P we can 
define the “momenta” variables TIT: 

A aw* 7T=-=p-Gf@ 
av w 

in terms of which the Hamiltonian can be  expressed 

I+r,cj) ~H(P,~)I.=,+,,~=w(lr)+Z(~). 

and 
v,= - D’v,. (119b) 

(115) 
Note that (109a) and  (109b) can be  written in terms of 7~ as 

+(A’G-G+&‘+ (116a) 

(116b) 

Straightforward computation shows that 

The  velocity transformation relation and  matrix, (log), 
remain unchanged for networks which include excess ele- 
ments and  controlled sources. Therefore, the discussion of 
Section II remains valid. The  excess elements do  not con- 
tribute any coordinates or velocities to the formulation. 
However, they do  contribute two co-energy terms to the 
Lagrangian. Define the co-energy functions for the excess 
elements 

&-G’~=M (117) 
where M  is defined by (22) and  (33). Moreover, since Z  
depends only on  Q  we can ignore the quasi-coordinates 
and  rewrite (116) as 

Equations (118) provide a  complete description of the 
circuit, however, the Hamiltonian structure has been  lost. 

IX. EXCESSELEMENTSANDCONTROLLED SOURCES 

In this section we extend the formulation to networks 
which contain excess elements and  controlled sources. If 
the network contains a  capacitor-only loop, then one  of the 
capacitors must be  placed in the chord. Similarly, one  of 
the inductors in an  inductor only cutset must be  placed in 
the tree. When  excess elements are present we require the 

iLl 

iL2 

‘J2 

iRt2 

l&2 

= Di, (119a) 

GdiLd =Js;.T,(iLT,) diLT,llLT =D,,i,, . (120b) 

The  Lagrangian is as before (eq. (79)) except that 

W*(V)=~,*,2(v,2)+u,*~,(iL,>+Tc*e,(v,2)+u;C_(iL,). 

(121) 
The  fact that the sources are controlled has no  effect on  

the velocity transformation matrix or the Lagrangian. These 
elements influence the equations only through the gener-  
alized forces F(V, t). It is necessary to show that the 
controlled source voltages and  currents depend  only on  V, 
. I.e., lL, and  vC2, and  1. From (119) it is evident that all 
voltages belonging to elements in THUG?, are directly related 
to vC2 and, similarly, all currents belonging to elements in 
T,UC, are directly related to i,,. Hence, 

3J2 = iJ2(vc2, t> (122a) 

vEl = ‘EdiLl l) (122b) 
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as was illustrated by Chua and McPherson [4]. With this 
modification (85) remains valid. 

X. SUMMARY AND CONCLUSIONS 

In this paper we have established a generalized Lagrange 
representation for a broad class of nonlinear RLC circuits 
with independent sources. It has been shown .that the 
generalized Lagrange formulation leads to a system of 
ordinary differential equations in a mixed set of gener- 
alized coordinates including capacitor charges ((I,,) and 
inductor fluxes (Gus). Moreover, the equations were shown 
to be a subset of the network loop and node equations 
along with certain additional compatibility equations. Fur- 
thermore, the initial conditions required for solution of the 
differential equations were shown to be completely speci- 
fied by knowledge of the initial charge or voltage of each 
capacitor and the initial flux or current of each inductor. 
Finally, we established that the solution of the differential 
equations did specify all network variables. 

The generalized Lagrange equations employed here in- 
clude Lagrange multipliers to handle differential con- 
straints and generalized forces to handle the nonconserva- 
tive effects. Including the compatibility constraints, the 
equations take the form 

@=o 
or, equivalently, 

qj=o. 
The generalized coordinates, 0, are composed of capacitor 
charges, qC,, inductor fluxes, +L2, and additional variables, 
w, termed quasi-coordinates, whose derivatives are linear 
combinations of the generalized velocities. The generalized 
velocities, V, comprise capacitor voltages, vc2, and inductor 
currents, i L1. Furthermore, the relationship between the 
generalized velocities and coordinates is V= T*{>, where 
the differential operator T* has been defined in the text. 

The introduction of quasi-coordinates are necessary when 
the generalized velocities are not uniquely defined by the 
coordinate velocities, 4cl and i,,. This could be <simply a 
matter of choice in selecting a particular partitioning of 
network elements. Compatibility constraints arise if the 
network contains inductor loops or capacitor cutsets, 
and/or by virtue of the partitioning of elements. 

It has been shown that the Lagrangian is composed of 
the usual energy storage terms plus a velocity-coordinate 
cross product term. Such cross product terms were noted to 
appear in earlier mixed formulations of network 
Lagrangians. The cross product term is shown to be non- 

unique and an explicit procedure for selecting it has been 
developed. 

The link with the method of Chua and McPherson was 
shown to be through our “degenerate” case-a case which 
can arise only in special circumstances. Moreover, these 
circumstances represent the only situation in which the 
Lagrangian of Chua and McPherson does not contain 
arbitrary parameters related to initial conditions. 

We have shown, in Section VII, that if. the network 
element constitutive equations have the appropriate causal- 
ity then the Brayton-Moser equations can be derived from 
the generalized Lagrange equations. In Section VIII we 
develop the generalized Hamilton equations in the form 

- aH 
T*Q=F 

$@=o 
or, equivalently, 

We have also shown that the quasi-coordinates are 
ignorable so that a minimal order differential system is 
obtained whose order is precisely the order of complexity 
of the network. In Section IX we extend the earlier results 
to networks with excess elements and controlled sources. 

Again we should note that we have dealt only with the 
formulative aspects of the generalized Lagrange and Ham- 
ilton equations for nonlinear RLC networks and have not 
touched upon their association with variational principles. 

Finally, we should point out that the restrictions im- 
posed by Hypotheses 1,2, 3,4 are precisely those of [4], [5]. 
These constraints can become binding when there are 
nonbijective elements and/or purely converter multiports 
within the network. Consequently, there is motivation for 
future studies to relax these conditions. 
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